ThinkingSketch Cookbook
Version 2.01E

ThinkingSketch Unit
www.sketch.jp

Oct. 4. 2002



Figure 1: ThinkingSketch Unit Members



Introduction

ThinkingSketch is a software for drawing. One of the
most charactristic aspect of this software is the auto-
matic creation of pictures.

ThinkingSketch does not simply create many figures ran-
domly and quickly, but enables user control generation
process and make the output figures closer to what the
user wants to be.

This “User’s Guide” is written for the beginner of Think-
ingSketch and introduce one of the fundamental function
of ThinkingSketch.

Now, let us introduce you to the world of ThinikingS-
ketch.

ThinkingSketch Unit



Chapter 1

Preparation

As ThinkingSketch is written in language Java, you need
to enable your computer to run Java program. The
easiest way to have runtime environment is to install
JRE(Java Runtime Environment). ! JDK is another

choice for you. 2

If your computing environment do not have Java run-
time environment, please download the latest JRE or
JDK from the website java.sun.com and install it.

As you need about 10M bytes to install Java environment in case you choose the
smallest one, please be reminded that you need some amount of storage area.

Please confirm that you can run any application that is
written in Java and then download ThinkingSketch form
http://www.sketch. jp/.

Then follow the i%straction in this cookbook and execute
ThinkingSketch.

1You can not make Java program using only JRE.
2You need more resources for this environment. This enables you to create Java program.
3Command run or ts will start ThinkingSketch execution.

4






Chapter 2

Let’s try

2.1 The first step

Following the instruction of the software package, after
starting up the ThinkingSketch, a window appears on
the full screen area on your computer.

You can find a rectangular area at the bottom of the
window. From here you can input text.

Enter command strings and hit enter key then immedi-
ately the command will be executed.



2.1. THE FIRST STEP

Figure 2.1: Initial Screen



8 CHAPTER 2. LET’S TRY

2.2 Imitating Mondrian

Do you know the name of a Dutch panter, Piet Mondrian
(1872-1944)7

As the first step of the ThinkingSketch, lets grenerate
abstract patterns that imitates Mondrian.

Move your pointer to the rectangular area under the win-
dow ! and click, then input the following text.

mondrian

then hit enter key. You will find a pattern that is consist
of multiple rectangles with frame.

I'We call this area as ’input area.’



2.2. IMITATING MONDRIAN

pointing: [rull]

Figure 2.2: A figure which imtate Mondrian



10 CHAPTER 2. LET’S TRY

2.3 ’mondrian’ command

If you get the first fugure, you can hit enter key more

few times. (Keyboard focus must be on the input area.)
2

Do you recognize the change of the figure on the screen?

Here the command 'mondrian’ is executed and red, blue,
and/or green rectangular will be added. 3

We have another command 'mond’ whose name is shorter.
When we use 'mond’ command, mesh pattern will ap-

pear with rectangular. ThinkingSketch choose two of the
vertical lines and horizontal lines to specify a rectangle
then colors the rectangle.

2ThinkingSketch has a history (retrieve) function. If you are going to input the same
command as you entered before, you can hit upward-arrow key or downword-arrow key to
retrieve and reuse the command.

3The ’mondrian’ command is a command that is extended as with plug-in function. We
know the painter, Piet Mondrian, did not use green so much, however, as this function is for
just for the trial use we currently do not care about the use of color.

4Command 'mond’ is created to explain command ’mondrian’.



2.3. "MONDRIAN’ COMMAND 11

rocessed: wondrian

Figure 2.3: Add more

Figure 2.4: Show also supplemental lines



12 CHAPTER 2. LET’S TRY

2.4 Clear Screen

Let’s clean up the screen. Input

clear

command using keyboard. Screen will be reset to the
initial status.



2.4. CLEAR SCREEN

13

Figure 2.5: After clearing up



14 CHAPTER 2. LET’S TRY

2.5 Import Graphig Parts

On ThinkingSketch, we can store the graphical parts of
drawing as indivisual graphic objects.

Specify command input area as

import samples/birdfish.drw

and execute it.

With this opearation, graphic parts that are already made

and are stored before will be inport to ThinkingSketch.
5

5Tf the specified file do not have ThinkingSketch readable format, ThinkpingSketch will
just ignore it.



2.5. IMPORT GRAPHIG PARTS

15

processed: import samples/birdfish.drw

iport samples/birdf ish.dre|

Figure 2.6: samples/birdfish.drw is imported



16 CHAPTER 2. LET’S TRY

2.6 Storing in ’parts box’

Before this operation we need to have one or more objects
on the screen. After importing objects from file, you can
see objects on the screen.

Execute

storage

command. Then graphic objects will disappear from the
screen.

With this operation, graphic objects on the screen will
be stored in ’parts’ as individual parts. (If some objects
are already stored they will appear to the front screen.)



2.6. STORING IN 'PARTS BOX’

17

pointing: [rull]

Figure 2.7: Move parts to the 'parts box’



18 CHAPTER 2. LET’S TRY

2.7 Use of command ’*stella’

We can automatically place the graphic objects on the
screen. Let’s execute

*stella

command.

One object, we had stored in the ’parts box’ will be
appeared on the screen. ’*stella’ command choose one
command from the parts box and change the size and
position to fit into a rectangluar area that will be spec-
ified with randomly selected two vertical lines and two
horizontal lines.



2.7. USE OF COMMAND ’*STELLA’

19

pointing: [rull]

Figure 2.8: Move a part from parts box using "*stella’ command



20 CHAPTER 2. LET’S TRY

2.8 Copy Multiple Graphic Parts from the Parts
Box

Those commands, whose name starts from * , can be
used to move multiple objects with one operation. In
order to specify the number ob object to be moved is
specified with the 'repeat’ command with an argument.
For example, if we execute the following command,

repeat 5

five objects will be generated on exch execution of "*stella’
command.



2.8. COPY MULTIPLE GRAPHIC PARTS FROM THE PARTS BOX 21

[repest 5

Figure 2.9: set repeat parameter

processed: was

Figure 2.10: execute *stella command again



22 CHAPTER 2. LET’S TRY

2.9 Use of other commands **pollock’, etc.

We can place the graphic object as parts using other
commands. Those commands are as follows.

*xstella
*pollock
*imai
*mattise

Please try, these commands one by one with ’clear’ com-

mand. There are clear differnce between the effects of
each command.

The command we introduced first "*stella’ changed the
height and width of objects. In case of command "*pol-
lock’, it does not change the size but only redefine the

position to be placed based on the roundomly generated
patterns.



2.9. USE OF OTHER COMMANDS "*POLLOCK’, ETC. 23

et

Figure 2.11: Example of *stella command execution

pointing: Tl ]

> 2 =

=
»

Figure 2.12: Example of *pollock command execution

st



24 CHAPTER 2. LET’S TRY

2.10 Use of *imai and *matisse

We executed the following two commands, here.

*imai
*matisse

You can see the results from the figures (Fig. 2.13, 2.14)
in the right page. The result of *imai command looks
drastic than that of *stella. This is because, one of the
side of new rectange is assigned to be a part of the rect-
angle. On the other hand, *mattise will limit the size of
target rectangle. As the result of such limitation, we feel
the output picture is a little bit more delicate.



2.10. USE OF *IMAI AND *MATISSE

pointine: Tot]

Figure 2.13: Example of *imai command execution

pointing: Tl ]

transter

Figure 2.14: Example of *matisse command execution

25



26 CHAPTER 2. LET’S TRY

2.11 Repeatedly used *matisse command

Try *matisse command.

*matisse

several times. The number of graphic objects will be
filled and gradually graphical pattern will appeare.

The result if command execution is different because of
the randomness in this command. But, the number of

object is also an important factor of generated picture.
Repeated use of the command or change of settings of
repeat command, please appreciate the result.



2.11. REPEATEDLY USED *MATISSE COMMAND 27

Figure 2.15: Example of execution of single *matisse command

[Frenster

Figure 2.16: Example of *matisse command execution



28 CHAPTER 2. LET’S TRY

2.12 mask commond
When we used commands introduced before, objects are

placed to whole the screen.

However, it is possible to specify the target area for ob-
ject placement can be limited to a rectanguler area.

Execute following command, before the execution of com-
mand *matisse.

mask 100 200 300 400

Then objects are placed in the rectangle that will be
defind with two points (100, 200) and (300, 400).



2.12. MASK COMMOND

29

pointing: [rull]

Figure 2.17: Example of execution commands mask and *matisse



30 CHAPTER 2. LET’S TRY

2.13 Clearing up Screen and Parts Box

Clean up both screen and parts box at a time. Execute
the folloing command.

reset
Screen and parts box will be initialized. ©

6clear command initialize only the screen and does not make any change to the parts box.



2.13. CLEARING UP SCREEN AND PARTS BOX

31

pointing: [rull]

Figure 2.18: Empty screen and parts box with reset



Chapter 3

Let’s make graphic parts

3.1 Primitive

We explained how to place graphical parts that is already
made.

In this chapter, we will explain how to create your orig-
inal graphical part. (Here after let us simply call graph-
ical part as part.)

As the first step, execute the following command.

line 100 200 300 250

You will find a line on of whose terminate point is (100,

200) and another is (300, 250). This line can be used
as a part. Such a command execution is not the only way

to generate parts. You can use the pointing device such
as mouse. By clicking right buttun on canvas, a popup
menu will appeare.

32



3.1. PRIMITIVE

[rocessed: Tine 100 200 500 260

TTre 100 200 300 2501

Figure 3.1: Draw a line

ointing: Tnomobject]

fillioutiine »]

Figure 3.2: Select a primitive from popup menu



34 CHAPTER 3. LET’S MAKE GRAPHIC PARTS

3.2 Use Image as Wallpaper

A function for utilizing existing image (file) as a wallpa-
per of this editor. We can display one picture on canvas.
You can trace the shapes of the wallpaper and create new
part. ! As the first step, execute the following command.

loadimage samples/photo.jpg

Nothing will be changed on canvas or screen. Then exe-
cute following command.

wall

Then, you will find a new image, which is read from the
file.

L As image data format JPG and GIF format is supported. In case you need to use diffrent
type data, you need to convert them to either JPG or GIF.



3.2. USE IMAGE AS WALLPAPER

pointine: Tot]

Tosdinese sanples/phota. 1pd]

Figure 3.3: Read JPG image into this system

Figure 3.4: Display the image as the wallpaper

35



36 CHAPTER 3. LET’S MAKE GRAPHIC PARTS

3.3 Trace Image

The primitive that is good for trace is DrawCurv. You
can specify current primitive as DrawCurv, by command

curv

or by choosing ’curv’ from popup menu. Then by trac-
ing the shape on the wallpaper free shape premitive can
be generated. If you add ’clear’ parameter to the wall
command,

wall clear

we can check the exact shape by clearing up the wallpa-
per.



3.3. TRACE IMAGE 37

Figure 3.5: Execution of trace

pointing: Tl ]

Figure 3.6: By removing wallpaper exact traced shape will appear



38 CHAPTER 3. LET’S MAKE GRAPHIC PARTS

3.4 Coloring

We can color any object. By executing following com-
mand,

color red

you can specify object color. 2 After specifying the

current color, the specified color will be used as object
color. Color palette is also available. By choosing ’color-
palette’ in popup menu, standard color palette will ap-
pear.

2Color name that used in Java, black, blue, cyan, darkGray, green, lightGray, magenta,
orange, pink, white, red, yellow are used as names of colors. You can also specify the color
by 256(0 - 255) level brightness. For example you can specify color red with command color
255 0 0.



3.4. COLORING

pointine: Tot]

Figure 3.7: Specification of color

Figure 3.8: Color Palette

39



40 CHAPTER 3. LET’S MAKE GRAPHIC PARTS

3.5 Generate a palette from the Wallpaper

You can generate a new palette by extracting from the
current wallpaper. Choose ’update-palette’ from then
popup menu then current color palette will be updated.
In order to show the new palette use ’image-palette’
menu item.

Using this function, you can easily take the same coloring
strategy same as great master.



3.5. GENERATE A PALETTE FROM THE WALLPAPER

Figure 3.9: Update image-palette

=]/ [2lo/=@ | | | mo
. q\#

A

Figure 3.10: Palette that has Wallpaper’s coloring strategy

41



42 CHAPTER 3. LET’S MAKE GRAPHIC PARTS

3.6 Other attributes than color

By specifying £111 attribute, you can define whether you
will fill the inside of the target object.

£fi11 fill
and

fill outline

is the examples.



3.6. OTHER ATTRIBUTES THAN COLOR

£
v o

Figure 3.11: Figures with fill attribute and outline attribute

43



Chapter 4

Use of Macro

4.1 Introduction to Macro

We call the function that sequentially execute the com-
mands that is witten in text file as 'macro’.

By using this function, you can shortcut the process of
retyping to get your favarable situation and output. If
you have any set of input sequences of command inputs,
you can make your own macro program.

Using any text edotor, edit the sequence of commands

and save it as a file. One command should be written as
oneline.

You can use your favorate texteditor such as 'NotePad’
on Windows. Example at the right page is a editing
macro file ’howal.mac’.

'Macro can be used with any extension. We are now recommending you to use the extension
’.mac’ for the macro.

44



4.1. INTRODUCTION TO MACRO

[
Ei0)  AJLTFHY

colord 150 150 150

repeat 400
repeat 11

mask B0 50 360 250

color red
rain

movemask 300 0
color blue
rain

movenask
color green
rain

mask 60 260 360 450
color wel low
rain

movemask 300 0
color cyan
rain

mowemask
color red
Krain

mask B0 450 360 650
color re
rain

movemazk 300 0
color black
rain

movemask
color green

il 1z

Figure 4.1: Check the contents of howal.mac with NotePad

45



46 CHAPTER 4. USE OF MACRO

4.2 Macro ’howal.mac’

The text in the right page is the whole of the macro

we define here. ? The number of lines are 40 including
empty line. We will give comments line by line.

20n each line, we added the line number that is not a part of original file. It will be used
for the reference.



4.2. MACRO "HOWA1.MAC’

e s s
O o0 ~NOO” O WN -~ O

DWW W WWWWWWWNNNDNDNDNDNDDNDN
QO OO NOOG P WNEF O OWOONO O WN -

O 00 ~NO O WN -

N
o

colord 150 150 150

repeat 400
mirror 1 1

mask 60 50 360 250
color red
*rain

: movemask 300 O
: color blue
: *rain

: movemask
: color green
: *rain

: mask 60 250 360 450
: color yellow
: *rain

: movemask 300 O
: color cyan
: *rain

: movemask
: color red
: *rain

: mask 60 450 360 650
: color red
: *rain

: movemask 300 O
: color black
: *rain

: movemask
: color green

: *rain

Macro "samples/howal.mac"

47



48 CHAPTER 4. USE OF MACRO

colord on the first line is to define how to change the
colors of object, when we make copies of an object from
parts box to canvas. 3

You can specify parameters by number from 0 to 255.
Coloring factor for RGB will be specified. By specifying
larger number, bigger change (color distribution) will be
suggested.

colord <red> <green> <blue>

On line 3, the number of objects that is created with one
command is specified as 400 with command repeat. 4

Line 4 is a kind of initialization. °

3The color of new object will be defined by giving change of RGB parameters.

4The number of specified parameter is one.

5In most cases, you do not need this. For the stable execution, this statement is added.
We do not make farther explanation, here.



4.2. MACRO "HOWA1.MAC’

1:

3:
4:

colord 150 150 150

repeat 400
mirror 1 1

Part of macro "samples/howal.mac line 1-5"

49



a0 CHAPTER 4. USE OF MACRO

By using mask on line 6, you can specify the taget rect-
angular area to make copy (from the parts box) for the
commands of object generation form the parts box to the
canvas such as *stella, *pollock, *imai, *matisse,

mask <left> <top> <right> <bottom>

On line 7, color specifies the color of objects which are
generated in line 8 with *rain command. By specifying
parameter as red objects’s color are closer to red.

On line 8, *rain is used. *rain is a command for gener-
ating lines directing from upper left corner to lower right
corner.

On line 10, movemask is used to shift current masking
area to specified direction.

movemask <L-R direction> <U-D direction>

On line 11 and 12, specify the generetion of lines with
colors close to blue.

On line 14, movemask specifies the movement of rectan-
guler masking area. °

movemask

On line 15, 16, specify the generetion of lines with colors
close to green.

81f you do not specify any parameters, the amount of shift specified before will be used,
again.



4.2. MACRO "HOWA1.MAC’

10:
: color blue
12:
13:
14:
15:
16:
17:

© 0N O®

mask 60 50 360 250
color red

*rain

movemask 300 0O
*rain

movemask

color green
*rain

Macro "samples/howal.mac line 6-17"

o1



52 CHAPTER 4. USE OF MACRO

Lines 18-28, simply repeat the description of line 6-17.
Difference is the position of generated objects.

With these descriptions three rectangular area will be
filled by lines.



4.2. MACRO "HOWA1.MAC’

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

mask 60 250 360 450
color yellow
*rain

movemask 300 0O
color cyan
*rain

movemask
color red

*rain

Macro "samples/howal.mac line 18-28"

93



o4 CHAPTER 4. USE OF MACRO

In order to execute macro use command exec or !.
After the command, specify file name.

| samples/howal.mac

In the right page, example of execution is shown.

Specify rectangular area on the screen. Then specify
typical color. Generating colors that is closed to specified
typical colors. Draw 400 lines 9 times changing the color
specifications and places.



4.2. MACRO "HOWA1.MAC’

95

I! sanples/hoval. nac

Figure 4.2: Execution of macro samples/howal.mac



26 CHAPTER 4. USE OF MACRO

Before executing macro, change the width of lines, us-
ing command linewidth.

linewidth 10

By this command, the width of lines becomes 10.



4.2. MACRO "HOWA1.MAC’

o7

Figure 4.3: Change of line width



o8 CHAPTER 4. USE OF MACRO

Try execute the same macro.

| samples/howal.mac

We can see the change of results. The output resembles,
but overall impression becomes different.

Thus, you can use command and macro, alternatively to
chech what kind of figure would be generated.

If we change *rain command to *boxer or *bubble, diffrent
figure will appeare.



4.2. MACRO "HOWA1.MAC’

29

[T sawpTes/hoval. nac]

Figure 4.4: Executuion of samples/howal.mac



60 CHAPTER 4. USE OF MACRO

4.3 Macro igo.mac

We are using random parameters to specify the position.
But, we can genearate some regular patterns.

samples/igo.mac is one of the examples. This program
consists of 16 lines.



4.3. MACRO IGO.MAC

el el
DO WND = O

O 00N O d WN -

color black

wmax 50
wmin 50
hmax 50
hmin 50

gridw 50
gridh 50

: repeat 25

: £i11 £ill

: *bubble

: £ill outline
: *bubble

Macro "samples/igo.mac"

61



62 CHAPTER 4. USE OF MACRO

In line 1, specify color as black.

wmax and wmin are used to set the parameter for xbubble.
7

We are specifying the maximun and minimum width
of target objects as 50. The width of generated object
will be 50.

By specifying with hmax and hmin,
We can specify the hight of target objects as 50 in a
same manner.

gridw and gridx, specifies the grid size of object. object
position will be quontified to be on the grid. On this
macro the size of grids for x and y direction are specified
as 90.

"*matissed *raind and *boxer commands are also under control of commands wmax and
wmin. Commands such as hmax, hmin, gridw, gridh are the same.



4.3. MACRO IGO.MAC

Jury
(@]

O 00N O d WN -

color black

wmax 50
wmin 50
hmax 50
hmin 50

gridw 50
gridh 50

Macro "samples/igo.mac line 1-10"

63



64 CHAPTER 4. USE OF MACRO

*bubble creates ovals. The number of ovals is speci-
fied with repeat command. It will be executed on line
14 and line 16.

On line 11, specify the number of generated object as 25.

fill commands on line 13 and line 15 specifies fill or do
not fill the target objects.

50 objects will be generated after executing this pro-
gram.



4.3. MACRO IGO.MAC

11:
12:
13:
14:
15:
16:

repeat 25

fill fill
*bubble

fill outline
*bubble

Macro "samples/igo.mac" line 11-16

65



66 CHAPTER 4. USE OF MACRO

Let’s execute following macro

! samples/igo.mac

We have some design patterns like the figure on the right
page.



4.3. MACRO IGO.MAC

67

®

» O o0 O

O o O O
L @ O

-_— (AR QR E eI
]

Figure 4.5: Execution of sampels/igo.mac



68 CHAPTER 4. USE OF MACRO

4.4 Macro yanagi_style.mac
Following macro is made to realize an existing image.

The art work in the right page is an artwork that is
created by one of ThinkingSketch Unit member.



4.4.

MACRO YANAGI.STYLE.MAC

i
P § L BE
e L ; I B i =
T FTHEL

.fé.'
i 4

ik
In|

;)

Figure 4.6: An artwork of ThinkingSketch Unit

69



70 CHAPTER 4. USE OF MACRO

To realize the image of the artwork in prefious page,
we created a macro.

This macro can be executed as macro samples/yanagi_style.mac.
Right hand figure is the result of the execution of yanagi_style.mac.



4.4. MACRO YANAGI.STYLE.MAC 71

processed: | sanples/vanazi_style.mac

TTRETEEEE

LN S I}

Figure 4.7: Execution of yanagi_style.mac

[ sauples anae | _style e



72 CHAPTER 4. USE OF MACRO

All the macro program is shown in right page.
Specify parts to be displayed from line 1 to 5.

What we are doing here is to get scanned image as JPG
format file yanagi_style. jpg and generate a set of rect-
angles whose colors are used in the original image with
command colormap. Those parts will be moved to parts
box with storage command.

Line 7 specifies the number of parts to copy at a time as
50. Line 8 specifies the target (mask) area. After line 9,
execute *stella command shifting mask area.



4.4. MACRO YANAGI.STYLE.MAC

WWWWNNNNMNNNMNMNNNNNRRRERRRBRBRRR
W NP OOWOWONOOOU B WNEFEOOWOWWNOOG d WNE~O

O 00 ~NO O WN -

// select color
loadimage samples/yanagi_style.jpg
colormap

storage

//

repeat 50

mask 100 50 150 660
*stella

: movemask 60 0O
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella
: movemask
: *stella

Macro "samples/yanagi_style.mac"

73



74 CHAPTER 4. USE OF MACRO

In this stage, the macro program is not completed,
yet.

We need to update the macro until to have enough tastes
and effects.

AS this is object based graphical editor, you can edit the
final output.



4.4. MACRO YANAGI.STYLE.MAC

L

Figure 4.8: Macro has changed more



Chapter 5

Beginner’s Works

Let us introduce some examples. Please try to make your
own original figure.

The artwork on the leftside is the one that is drawn by
a person T (who lives in Tokyo) as a beginner of Think-
ingSketch.

This figure has simple but strong impression.

76



Figure 5.1: Works drawn by T

7



78 CHAPTER 5. BEGINNER’S WORKS

Next works are 'Red Forest.” Creator is the same per-
son. He already had a motif of this picture. Using the
existing motif this image was drawn.



79

Point ingx 477 at [x: 1163 v: 8221

Figure 5.2: 'Red Forest’ by T



80 CHAPTER 5. BEGINNER’S WORKS

This work is based on the motif of matisse. Creator is
K. After making parts looks like part of Matisse’s work.

Place them with *pollock command. Slite adjustment
was made after *pollock execution.



Figure 5.3: Matisse Arrangement by K

81



82 CHAPTER 5. BEGINNER’S WORKS

Creator is M. Image comes from spring landscape in
Japan. Used *imai and *pollock. !

1He specified a parameter to change the distribution on canvas.



Figure 5.4: Spring Landscape by M

83



Update History

AUG 26/20020 Update to Version 2.0 Alpha. The biggest change is (1)
support of multiple pages. (2) Support of transparency of colors. Those changes
are our size of focus in this cookbook.

84



